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Craik (1968) has previously examined the stability of horizontal liquid films when 
an air stream flows over the liquid surface and when the surface is contaminated 
by an insoluble surface-active agent. The present theoretical work extends this 
investigation to examine the role of soluble surface-active agents for cases where 
the liquid Reynolds number is small. This role is found to be a rather complex one 
which, under suitable conditions, may be either stabilizing or destabilizing. 

Related experimental work is described which yields results in qualitative 
agreement with the theoretical analysis. 

1. Introduction 
Experimental and theoretical investigations by Craik ( 1966) of wave generation 

by wind on thin horizontal liquid films revealed a previously unknown type of 
instability which arises when the film thickness is sufficiently small. Later, the 
same author (Craik 1968) performed two theoretical analyses to examine the 
influence of insoluble surface-active agents on the conditions for wave generation 
by wind in liquid films at  moderately large and at small Reynolds numbers 
respectively. In  these analyses, as in earlier work by Benjamin (1963), the 
properties of the contaminated surface are identified with those of a visco-elastic 
membrane: thus, deformation of the surface produces quasi-elastic and quasi- 
viscous forces which are attributable to a surface elasticity and surface viscosity 
respectively. 

The analysis at  large liquid Reynolds numbers showed that surface contamina- 
tion enhances stability owing to increased dissipation in the viscous layer just 
within the liquid surface. Similar results have been obtained by Levich (1962)’ 
Dorresteiii (1951)) Miles (1967) and others in the absence of a primary shear flow 
in the liquid, and this mechanism is now well understood. The analyses at low 
Reynolds number by Benjamin (1963) and Whitaker (1964) reveal that surface 
elasticity also exerts a stabilizing influence on falling liquid films: but the physical 
mechanism operating in this case differs from that just described for large 
Reynolds numbers. On the other hand, Craik’s analysis at  small liquid Reynolds 
numbers indicates that the presence of surface elasticity may promote instability, 
and the present work originated as an attempt to discover whether this is 
indeed so. 
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Many surface-active agents are somewhat soluble in water. Also, in thin films 
at  low Reynolds numbers, waves travel very slowly (with velocities of the same 
order as that of the liquid surface) in comparison with waves in films at  larger 
Reynolds numbers. Accordingly, the time available during one wave period for 
the transfer of material between the adsorbed surface layer and the bulk solution 
is correspondingly greater for the former than for the latter. Because of this, the 
influence of solubility of the surface-active agent is more likely to be felt in the 
thinner films, and it was thought necessary to include such effects in the present 
analysis. On the other hand, it was not considered worthwhile to investigate the 
effects of solubility on the stability of films at larger Reynolds numbers: the 
comparatively short periods of waves in the latter case are likely to ensure that, 
as far as stability considerations are concerned, most surface-active agents will 
behave as if they are virtually insoluble. 

The effect of soluble surface-active agents on the damping of waves in deep 
water has been considered by van den Tempe1 & van de Riet (1965), Levich (1962), 
Miles (1967) and Lucassen & Hansen (1967). Also, Whitaker (1964) has shown 
that diffusion of solute may decrease the stabilizing action of surface contamina- 
tion on falling liquid films a t  low Reynolds numbers. The present formulation of 
the equations and boundary conditions satisfied by the surface-active material is 
similar to that of those authors; but, in most other respects, the formulation of 
the stability problem follows that of Craik (1968). 

To avoid possible confusion, the concentration of surface-active material in 
the bulk solution (in, say, moles will hereafter be called the ‘solute concen- 
tration ’ while the surface concentration of adsorbed surface-active material (in, 
say, moles will be designated the ‘surfactant adsorption ’. The distribution 
of solute concentration is determined by the processes of convection and mole- 
cular diffusion, and the surfactant adsorption is directly related to the solute 
concentration just within the surface. Also, since matter is necessarily conserved 
during the transfer of material between the solution and the adsorbed surface 
layer, molecular diffusion normal to the surface along a gradient in solute con- 
centration must result in a corresponding change in the amount of adsorbed 
material on the surface. In  addition, local extension or contraction of the surface 
will bring about a respective deficit or excess both of surfactant adsorption and 
of solute concentration just within the surface. 

Since the surface tension of the liquid is a function of the surfactant adsorption, 
local changes in surfactant adsorption produce corresponding variations in 
surface tension, and these contribute to the distribution of tangential stress at 
the liquid surface. This stress distribution in turn affects the motion of the liquid. 

Thus, the dynamical influence of soluble surface-active material depends on 
four separate factors: the mean concentration of such material present, the 
functional dependence of surfactant adsorption on solute concentration and of 
surface tension on surfactant adsorption, and the molecular diffusivity of the 
solute. 

A further factor, which is neglected in the present work, is surface diffusion of 
the adsorbed material. Even when the surface-active material is virtually in- 
soluble and no significant molecular diffusion takes place in the bulk liquid, 
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diffusion of adsorbed material along the surface may occur. Indeed, this process 
may readily be identified with the ‘surface viscosity’ of insoluble monolayers. 
However, with soluble material and, particularly, for the thin liquid films investi- 
gated here, surface diffusion is likely to remain unimportant in comparison with 
the transfer of material between the adsorbed layer and the solution. 

The present investigation concerns waves in thin films at low Reynolds numbers 
when the influence of viscosity is felt throughout the depth of the liquid. This is in 
contrast to the situation at  larger Reynolds numbers when the viscous effects are 
significant only in two thin layers, one close to the liquid surface and the other 
adjacent to the bottom boundary. Now, the diffusivity of solute is invariably 
small compared with the kinematic viscosity; and so, depending on circumstances, 
the influence of the former may either extend throughout the film or remain 
confined to thin layers near the boundaries of the film. To account for both 
possibilities two approximate analyses are developed. In the first of these, the 
equation governing the solute concentration is solved in the same approximate 
manner as are the equations of motion for long waves at  low Reynolds numbers; 
while, in the second analysis, asymptotic approximations are used which are 
valid in the very thin boundary-layer regions where variations of solute concen- 
tration occur. 

Further intsoductory remarks concerning other aspects of the present work, 
such as the formulation of the linearized stability problem and evaluation of the 
stresses exerted by the airflow on the perturbed liquid surface, are contained in 
the introductions to the papers of Craik (1966,1968). For brevity, these have not 
been repeated here. 

In  $ 2, some experimental work is described in which air is blown over contami- 
nated liquid films and the conditions for onset of instability are determined. The 
equations governing the surface film and solute concentration are described in 
$ 3  and the stability problem is formulated in $ 4. The two separate analyses for 
large and small diffusion respectively are described in $$5 and 6, and a concluding 
discussion is given in $ 7 .  

2. The experiment 
2.1. Apparatus and materials 

The apparatus was, in the main, that used by Craik (1966) in his investigations of 
uncontaminated liquid films, and reference may be made to that paper for 
descriptive details. An explanatory diagram is given in figure 1. The flow of air 
and water through the channel could be controlled independently, and the entry 
section was designed to allow the formation of very thin uniform liquid films. 
The airflow was measured by a movable Pitot-static arrangement of two parallel 
tubes of lmm bore attached to a ‘Mercury’ Greer manometer. The surface 
velocity and volume flux of the water film were measured directly and the film 
thickness was calculated in the manner described by Craik (1966, p. 373). 

For agiven airflow, the amount of water entering the apparatus could be finely 
adjusted until the critical conditions for wave formation were reached. In  the 
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present experiment the influence on these conditions of two different surface- 
active agents, Teepol and camphor, was examined. 

Teepol is an industrial cleansing solution which is miscible with water and 
which has strong surface-active properties. It was first filtered to remove 
suspended matter and was used in two separate concentrations of 1 part Teepol 
to 2 parts and 4 parts respectively of water. This solution was allowed to drip 
from a, thistle funnel of narrow bore onto the sponge-filled water reservoir at the 
entry section of the apparatus. The drip rate remained constant a t  0.11 cm3/min 
for the 1 : 2 solution and 0.15 cm3/min for the 1 : 4 solution. 

FIGURE 1. Diagram of apparatus (not to scale). 1, fan; 2, flexible ducting; 3, honeycomb 
grid; 4, Pitot-static tube, attached to manometer; 5, thistle funnel for application of 
Teepol; 6, needle valve controlling flow from head tank; 7 ,  sponge-filled reservoir; 
8, water film; 9, water exit; 10, measuring jar. 

Camphor was introduced to the apparatus by the simple expedient of placing 
several solid pieces on the surface of the sponge-filled reservoir: the camphor then 
spread naturally over the liquid surface. Unfortunately, this method does not 
lend itself to a satisfactory determination of the amount of camphor present on 
the liquid film. Indeed, no attempt was made, for either contaminant, to measure 
the surface properties of the liquid. Such measurements, on a moving liquid film 
of thickness around 0.3 mm and in the presence of an air stream, are beyond the 
scope of the present authors’ experimental talents, howcver desirable the results 
might be ! 

Very thin uniform films could be maintained in the presence of the airflow. 
When Teepol was added, such films were more easily maintained than for clean 
water. Initial difficulty was encountered when camphor was added, owing to the 
reluctance of the water film to leave the glass plate at  the outlet end of the 
apparatus; but this was overcome by attaching several small pieces of foam 
rubber to the edge of the plate, which facilitated the flow over the edge. 

2.2 .  Observations 

( a )  Clean water. With clean water, the results of Craik (1966) were confirmed. 
In  particular, with constant airflow, a steady reduction in the film thickness 
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produced the following sequence of events: (i) a ‘pebbled’ surface occurred for 
thick films; (ii) regular ‘fast’ waves travelling down the channel were obtained on 
decreasing the film thickness; (iii) these waves disappeared for still thinner films, 
leaving an essentially smooth surface; (iv) for very thin films, the surface again 
exhibited disturbances in the form of ‘slow’ waves; (v) with further decrease of 
the water flow, dry patches formed on the plate. 

Film thickness (cm) 

FIGURE 2. Maximum air velocity plotted against thickness of water film at transition from 
a stable film to ‘slow’ waves (-) and to ‘fast’ waves (---). x , uncontaminated 
film; + , contamination by camphor; A, contamination by 1 : 4 Teepol solution; 0, con- 
tamination by 1 : 2 Teepol solution. The points marked by A and denote observations 
of stable films with contamination by 1 : 4 and 1 : 2 Teepol solutions respectively. 

( b )  Contamination by Teepol. When a single drop of Teepol was allowed to 
fall onto the water reservoir, disturbances of type (i) and (ii) were immediately 
eliminated, to reappear after several seconds when the contaminant had been 
flushed out of the channel. When Teepol was continuously applied to the 
apparatus in the manner described above, disturbances of type (i) and (ii) could 
not be produced even at  the maximum airflow available (i.e. a maximum velocity 
of just over 600 em sec-l in the centre of the channel). However, on reduction of 
the water flow, ‘slow waves’ of type (iv) were observed; but their onset occurred 
at  film thicknesses less than the corresponding ones for clean water. Teepol 
therefore increased the range of stable film thicknesses by eliminating ‘fast waves ’ 
and by restricting the occurrence of ‘slow waves’ to even thinner films than for 
clean water. This effect was greater with the stronger 1 : 2 solution of Teepol 
than with the weaker 1 : 4 solution. 

Quantitative results showing the critical film thickness for onset of ‘ slow waves ’ 
against the maximum air velocity in the channel are given in figure 2 along with 
the corresponding results for clean water (cf. Craik 1966, figure 5). Results could 
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not be obtained at  film thicknesses less than about 0.02 em, owing to drying of 
the film. However, two results are recorded of conditions where a very thin film 
remained stable, but where further reduction of the water flow rate caused the 
film to dry. 

This drying process is worthy of mention. For uncontaminated films, small 
local dry patches first formed just ahead of the crests of slow waves (which had 
become horseshoe-shaped, concave in the downstream direction). These dry 
patches thengrewin time, breakingupthe filminto separatewetstreaks. However, 
when contaminated by Teepol, the film was found on several occasions to dry in 
a remarkably uniform manner. Indeed, once, when the water flow was inad- 
vertently stopped, the authors attempted to observe the onset of ‘slow waves’ 
in a completely dry channel, so imperceptibly and uniformly had drying occurred ! 

A further feature occurred in these contaminated films which was absent in the 
uncontaminated case. On an otherwise stable film, a ‘ streak’ or indentation would 
sometimes extend lengthwise for some distance down the channel. These 
originated at the entry section and, on occasion, extended right to the channel 
exit. Such streaks were best seen when the channel was illuminated from one 
side: the streak then cast a dark shadow on a sheet of white paper attached to the 
underside of the glass plate. A photograph of such a streak is shown in figure 3, 
plate 1. When a streak occurred, quantitative observations of onset of instability 
could not be made since the film was no longer uniform. It was found that the 
streaks could be eliminated by careful smoothing of the sponge-rubber in the 
entry section. 

The explanation of these streaks is simple but interesting. An irregularity of 
the entry section causes an indentation of the film surface, where the film is 
locally thinner than elsewhere. With clean water, such an indentation is readily 
filled by flow under gravity from the adjacent regions where the film is thicker. 
However, when the liquid surface is contaminated, it resists extension and con- 
traction, and the inflow to fill the indentation is inhibited. If the surface is 
sufficiently contaminated, it is virtually immobile, and the inflow under gravity 
is then a small fraction of that for a clean surface. Consequently, the initial 
indentation may persist for a considerable distance downstream. 

( c )  Contamination by camphor. With camphor, ‘fast waves’ of case (ii) are 
inhibited, but not eliminated as in ( b )  above. The onset of fast waves occurred at  
larger film thicknesses than for clean water, thereby extending the region of 
stability. However, the transition from a stable film to slow waves of type (iv) 
also occurred at  larger film thicknesses than in the uncontaminated case, and this 
acts to decrease the region of stability. These results are shown in figure 2,  where 
they may be compared with those for clean water and for contamination by 
Teepol. 

A remarkable feature of the results is that, whereas Teepol restricted the 
appearance of slow waves to thinner films than for clean water, camphor has the 
opposite effect: it permits slow waves to occur in thicker films than with clean 
water. 

Attempts to measure the velocities of propagation of slow waves were incon- 
clusive. These velocities were always less than that of the liquid surface; but the 
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dependence of propagation velocity on wave amplitude indicated that non- 
linear effects were present whenever the waves were sufficiently visible to allow 
their speeds to be determined. 

FIGURE 4. Sketch of shear flow and surface disturbance. 

3. Surface-active agent 
The primary flow configuration is shown in figure 4. In  the ensuing analysis, all 

quantities are made dimensionless with respect to the surface velocity V of the 
liquid film, the film thickness h and the liquid density p. The liquid occupies the 
region between the rigid boundary x = 0 and the free surface z = 1, and motion is 
in the x direction with dimensionless primary velocity profile ii = [G(z), 0, 01. The 
motion of the liquid derives from a constant mean tangential stress exerted on the 
undisturbed free surface by a co-current air stream. The pressure gradient in the 
direction of motion produces negligible curvature of the liquid velocity profile 
provided the depth of the air phase is large compared with that of the liquid. This 
condition is well satisfied, for example, in the experiments described in $ 2 .  
Consequently, the primary liquid velocity profile may be taken to be linear, with 

In  the subsequent stability analysis, this primary flow is assumed to be 
perturbed by a small disturbance periodic in the x-direction. Such a disturbance 
causes periodic contractions and expansions of elements of the liquid surface, 
which produce corresponding periodic changes in the surfactant adsorption about 
its equilibrium value. These, in turn, are related to fluctuations of the (dimen- 
sionless) solute concentration C about its equilibrium value Co. 

The solute concentration C is governed by the linearized equation (cf. Miles 
1967; van den Tempe1 & van de Riet 1965; Levich 1962) 

U ( z )  = z. 

DC a - a  ot = (%+u%) C = A(V2C), 

where A = K / V ~  is a dimensionless parameter proportional to the molecular 
diffusivity K of solute. Also, since there is no diffusion of solute across the rigid 
boundary at  z = 0, 

(3-2) aqaz  = o (2 = 0). 

The appropriate boundary condition at  the free surface is more complex, and 
requires some derivation. The amount of contaminant adsorbed on a material 
surface element of area A is FA, where F is the surfactant adsorption (both A and 
I7 being dimensionless). This amount FA may vary owing to diffusion of solute 
normal to the surface. Thus, 

q r A ) / m  = - AA(aC/an),, 
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where n denotes the direction normal to the surface and the subscript s denotes 
evaluation at the surface. Such a relationship was first proposed by Boussinesq 
( 1 9 13). Linearization yields 

Also, to linearized approximation, the rate of dilatation of a surface element is 

mhere u is the velocity component in the x direction. Therefore, 

Dt 

But the solute concentration C just inside the surface and surfactant adsorption 
I’ are directly related by some function I’(C), and small deviations from their 
equilibrium (i.e. unperturbed) values C,, I?,, must satisfy the relationship 

r-r, = n(c-c0),, (3 -3 )  

where A e (dI’/dC), is evaluated a t  equilibrium conditions. Similar relationships 
are derived by Miles (1 967) and Levich (1 962). On eliminating !? from the above 
two results, the surface boundary condition satisfied by C is found to be 

] = o .  DC rau AaC +--+-- 
Dt ~ a x  A az (3.4) 

4. The stability problem 
The primary flow described above is considered to experience a small two- 

dimensional perturbation such that the vertical displacement of the liquid 
surface is 

Here, tl and c are the dimensionless wave-number and complex phase velocity 
of the disturbance. The corresponding perturbation velocity components (a, 0 , 8 )  
are expressible in terms of a stream function $(x, x ,  t )  = - $ ( z )  ~ ( x ,  t )  as 

z - 1 = ~ ( x ,  t )  = Sefa(r-ct). (4.1) 

a = a+laz = +T , 8 = -a+/ax = ia&, ( 4 4  
where the prime denotes differentiation with respect to z.  On taking the primary 
velocity profile to be Z(z )  = x ,  the linearized equations of motion yield the Orr- 
Sommerfeld equation in the form 

$iV-2a2$”+a4$ = iaR(z-c) ($”-a2$), (4.3) 
where R = Vh/v is the Reynolds number of the liquid film and v the kinematic 
viscosity. 

The boundary conditions governing the motion are, with one exception, the 
same as those used by Craik (1968). At the rigid boundary, 

(4.4a, b )  46(0) = $”) = 0, 
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and the kinematic surface condition is 

$(1) = 1-c.  (4.5) 

As in Craik (1966, 1968)) the dimensionless normal and tangential stress pertur- 
bations exerted by the air stream on the liquid surface are represented as 

C’yy = b ( x , t ) ,  Vzu - - %(x, t ) ,  

respectively, where the parameters II and E are complex. The normal stress 
condition at  x = 1 is then (cf. Craik 1968, equation (2.11)) 

( ~ - C ) # ‘ - # - ( ~ E ~ ~ - ~ ( # ’ ’ ’ - ~ ~ ~ ~ ’ ) - ( T ~ E ~ + G - I I )  ( l - -~ ) - ’$  = 0, (4.6) 

where G = gh/V2, To = y(pV2h)-l are dimensionless gravity and surface tension 
respectively, g being gravitational acceleration and y the mean value of the 
coeBcient of surface tension. Note that this boundary condition is influenced by 
the presence of surface-active agents only through the reduction in mean surface 
tension from its value for clean surfaces. 

However, in the tangential-stress boundary condition, allowance must be made 
for variations in surface tension, which produce additional periodic stresses a t  the 
contaminated surface. Also, the dimensionless surface-tension parameter T is a 
function of the surfactant adsorption; i.e. T = T(F),  where Tfr,) = To. The 
tangential stress component due to deformation of the contaminated surface is 
then, to linearized approximation, 

ac 
(4.7) 

where (dT/dr),  is evaluated at  the equilibrium value ro of surfactant adsorption. 
The quantity 

is readily identified with the dimensionless surface-elasticity parameter 

T~ = - ro(azyr), 

Tl = y1(pV2h)-l 

used by Benjamin (1963) and Craik (1968), where y1 is the sum of the elastic 
moduli of surface dilatation and shear. 

At this stage, it is convenient to write the perturbation in solute concentration 
as 

Equation (4.7) then becomes 

(4.8) c-Go = f (z )  r (x ,  t ) .  

- T,A ac 
Cz. = - __ - = - = iafr(x ,  t ) ,  ro ax r0 

and the linearized boundary condition expressing continuity of tangential stress 
at the surface (cf. Craik 1968, equation (2.13)) is readily found to be 

$” +- [a2 + RC( 1 - c)-’] $ - (T lA /F0)  iaRf = 0 ( X  = 1). (4.9) 

Equation (4.3) and the boundary conditions (4.4a,b), ( 4 4 ,  (4.6) and (4.9) do 
not yet constitute a complete set which determines the motion, since the boundary 
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condition (4.9) contains the unknown quantity f( 1). The governing equation for 
the solute concentration is found from (3.1) and (4.8) to be 

f ”  - [a2 + iaA-l(z - c)]f = 0, (-2.10) 

while the boundary condition (3.2) is 

f ’  = 0 (2 = 0). (4.11) 

Recalling that, to linearized approximation, the horizontal velocity u of the 
liquid surface is &+Ti‘? evaluated at x = 1, the remaining boundary condition 
(3.4) reduces to 

(l-c)j+A(i~~A)-’f’+(F,, /A)(l-$’) = 0 (X = 1).  (4.12) 

The addition of equation (4.10) and boundary conditions (4.11), (4.12) to  those 
above completes the specification of the eigenvalue problem for the complex 
phase velocity c. 

This set of equations will now be solved approximately for two different models. 
In  fi 5, we consider cases where the perturbations of solute concentration extend 
throughout the depth of the liquid; and, in 8 6, we examine a model in which such 
perturbations are significant only in a very thin layer next to the liquid surface. 
It should perhaps be recalled that, for both models, the kinematic viscosity of the 
liquid is large compared with the molecular diffusivity of solute. 

5. Diffusion throughout film 

expressed as a series in ascending powers of X, 

If aA-l, a IcI A-I and a2 are small compared with unity the functionf(z) may be 

n=O 

and the constants Bn determined by substitution for f i n  (4.10). It is found that 

f = Bop + 4 ( a 2  - iacA-l) z2 + iaA-lz3 + &(a2 - i a ~ A - , ) ~  z4 + . . .] 
+B,{~++(a2-iacA-~) x ~ + & ~ ~ A - ~ x ~ + .  ..>. (5.1) 

Also, (4.1 1)  immediately yields the result B, = 0. (Note that, although equation 
(4.10) has an exact solution in terms of Airy functions, the present approximate 
methods are preferable for our purposes because of their relative simplicity. ) 

A series solution of equation (4.3) is found in a similar manner to be (cf. Craik 
1966, equation (6.4)) 

$(x) = A ,  + A,z + A2{z2 + &@Z4 + &@Z5> + A,{Z3 + &fk5 + &&‘>, (5.2) 

8 = iaR( 1 - c) + 2a2, y^ = iaR, 

where second- and higher-order terms in the small quantities 9, @ have been 
omitted. Boundary conditions ( 4 . 4 ~ ~  b )  give A ,  = A ,  = 0. 

We now assume that aR, aR[cI, a2 are all sufficiently small compared with 
unity to be neglected; but, since A-l% R (by virtue of the fact that K < v), terms 
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of order aA-l, aA-lIcI will be retained to first order, and only their products 
neglected compared with unity. These assumptions restrict attention to films of 
fairly small Reynolds numbers in which the waves are long compared with the 
film thickness. Such conditions hold for the 'slow' waves described in $2 .  On 
substituting expressions (5.1) and (5.2) (with A,  = A, = B, = 0)  into equations 
(4.6),  (4.9) and (4.12), using result (4.5) to replace unity by q5( 1)  ( 1  - c)-l in (4.12), 
and neglecting small terms, we obtain 

A,[2 + R E (  1 - c)-'] + A3[6 + RC( 1 - c)-'] 

+B,(T,h/I',) iaR[l +iaA-l- iiacA-l] = 0,  (5.3) 

A, iaR[ 1 + (TOE, + G - II ) ( 1  - c)-'] 

+ A 3 [ 6 + i ~ R { 1 + ( T O a 2 + G - I I )  ( l - ~ ) - ' } ]  = 0, (5.4) 

(5.5) A 2 [ 2  - ( 1  - c)-'] + A, [3  - ( 1  -c)-'] - B,,ri1[3 - c - iaA+ h(1- c ) ]  = 0. 

In  equation (5 .3) ,  terms of order aR, a,, aR2 12 I , a2R 1 C 1 have been omitted from 
the coefficients of A ,  and A,, and terms of order a,, a3A-, have been neglected 
from the expression in square brackets in the coefficient of B,. In  (5.4), terms of 
order a2R2, a,, a3B(T,a2 + G - II), a2R2(17'a2 + G - II) have been omitted from the 
coefficients of A, and A,; while, in (5.5), terms of order a,, aR are neglected from 
the coefficients of A, and A,, and those of order a,, aA-l, a3A, ha2, hab-l from the 
expression in square brackets in the coefficient of B,. (In estimating the orders of 
magnitude of these terms, it is assumed that IcI is of order unity.) 

Excluding the trivial case A, = A, = B, = 0, it is evident that these equations 
are consistent only when the determinant of the coefficients of A,, A,, B, is zero. 
In  evaluating this determinant, small terms of the same order as those already 
neglected must of course be omitted. This equation of consistency is then 

3iX 3 ( 1 - ~ )  
T,C$+G-II+------ 

2a  iaR 

To 012 + G - II + '("- ' ) )  
(5.6) zaR . 

- $T'h(iaR) [1+ iaA-l( 1 - +)I 
- 

3 - c -iaA + A( 1 - C) 

To elucidate this result, we shall now examine three cases for which further 
approximations can be made. 

Cuse (5i): 11-clh B 1,aA; aA-lIl-&I -g 1 

Examination of equation (3 .3 )  reveals that h (which is dimensionless) is propor- 
tional to h-l, where his the liquid film thickness. The first of the above inequalities 
therefore holds for sufficiently thin films. It will also hold in situations where a 
given change in surfactant adsorption produces only a small change in the under- 
lying solute concentration; as, for example, when the surface-active material is 
only slightly soluble. The second inequality is satisfied whenever the characteristic 
time scale associated with the diffusion of solute is short compared with the period 
of the wave: this is likely to be so at typical wave-numbers for sufficiently thin 
films or when the (dimensional) molecular diffusivity is large. 
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When both these conditions are satisfied, equation (5.6) simplifies to 

~ ( ~ - c ) ~ - ~ ~ R ~ ( ~ - c ) + ~ ~ R T ~ ( $ + ~ ~ ~ R ( T ~ ~ ~ + G -  n)} = 0, (5.7) 

where B + G - II + $(iX/a) + 3T1. 

This is identical to the result obtained by Craik (1968, equation (8.9)) for 
insoluble surfactants whose properties are characterized by the dimensionless 
surface-elasticity parameter TI. Proceeding from this equation, Craik finds 
solutions with c, close to unity for which surface elasticity is destabilizing. 

Case(5ii): I l -c lh< l;aA-lIl-&l < 1; a A - l g a 2  

The first condition implies that fairly large changes in solute concentration 
produce only small changes in the surfactant adsorption, the second is as for 
case (5i) and the third restricts attention to  waves sufficiently long that only 
vertical diffusion of solute need be considered. Result (5.6) now yields a quadratic 
equation for c, namely 

C' - ~ ( 4  - +iaR(T0a2 + G - II) + +RC - iaRhT1) 

+3-iaR(TOa2+G-~)+$RC- iiaRhTl = 0. (5.8) 

On denoting the real and imaginary parts of c, II and X by subscripts P and i, 
and ignoring terms in aRhT,, $aR I nil, &RE, and aR compared with unity (cf. 
Craik 1968, $ 8 ) ,  the real part of this equation yields the result that 

either c, = 1 or c, = 3, 

and the imaginary part gives 

ci = -iaRhTl for c, = 3 

= ~aRhT,+~RC,-~aR(Toa2+G-II,) for c, = 1. 

Since ci is negative when c, = 3, such disturbances are stable; but a disturbance 
with c, = 1 is unstable whenever 

n,+ #(&/a) + SaRhT, > Toa2 + G. 

The latter result may be compared with the corresponding result for uncontami- 
nated films, that c, z 1 and such waves are unstable when ll, + $(Xi/a) > Toa2 + G. 
Since aRhir, is positive, it is clear that the influence of surface contamination here 
reinforces the destabilizing action of the surface-stress components II, and Xi. 

Case ( 5  iii) large surface-elasticity parameter 

When the parameter Tl is sufficiently large-precise conditions, which depend 
on the magnitudes of a, R, hand A, neednot be given here-equation (5.6) may be 
approximated by equating the right-hand side to zero. This yields hhe solutions 

c =1--a 

ci 1 &aR(II,-To~2-G). 
T 2 : m, 

(This solution may also be derived from the less general eqtiations (5.7) or (5.8) 
on making suitable approximations.) 
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is generally small compared with unity, this solution corresponds 
to a wave travelling at about half the speed of the liquid surface, which is unstable 
whenever II, > Toa2+ G; that is, when the pressure component in phase with the 
wave elevation, which derives from the airflow, is sufficiently large to overcome 
the restoring forces of gravity and surface tension. 

This is a much more stringent condition than that for instability of clean films; 
for the destabilizingrole of the tangential-stress component Xi, which is dominant 
in very thin clean Hms, is here totally suppressed. Accordingly, the effect of a 
sufficiently large surface-elasticity parameter is strongly stabilizing. 

Since aR I 

6. Thin diffusion layers 
Returning to equation (4.10), we now obtain two approximate solutions valid 

for large values of aA-l. These are simply the asymptotic solutions of Airy’s 
equation, and are (cf. Lin 1955, $ 3.4) 

fi,2 = (z-c)-iexp[T %(iaA-l)$ ( z - - c ) ~ ] { l  +(aA-l)-*g(z)+ ...), (6.1) 

where it = exp (tin) and, for nearly real c, z - c = (c - z )  exp ( -in) when z < c,. 
Both solutions oscillate rapidly, the amplitude of fl decreasing exponentially 
with distance from the solid boundary z = 0 and that of f2 decreasing with distance 
below the surface z = 1. When (aA-l)*Il-clH and (aA-l)&IcIH are both large 
compared with unity, the fluctuations in solute concentration, denoted by f, are 
confined to two very thin layers (i.e. thin compared to the film thickness which 
itself may be only about 0-3  mm), one close to the surface and the other next to 
the boundary z = 0. 

The perturbation stream function will be represented as before by the series 
solution for $(z )  given in (5.2),  which is valid when aR, aR IcI and a2 are small. 
Proceeding as in $5, but with f(z) now given by linear combinations of the 
solutions (6.1), we obtain the three equations 

A , [ ~ + R z ( ~  -c ) -~I  + A 3 [ 6 + R X (  l - C ~ I  + f ( i )  ( q q r , ) i a R  = 0, 

~ , [ 2 -  ( 1  - c ) - l ~  + ~ , [ 3  - ( 1  -e) -y + r,l[f’(i)iaa-l-f(i)h(l -c)l = 0, 

A iaR[ 1 + (To + G - II ) (1  - c)-’] + A3[6 + iaR{ 1 + (T0a2 + G - II ) ( 1  - c)-’>] = 0, 

from which may be derived the result corresponding to (5 .6 ) ,  namely 

3iX 3( 1 - C )  $Tlh(iaR) {Tom2 + G - II + 6(iaR)-l  ( ZC - 1 ) )  
{ - iAa-l[f’( l)/f ( I ) ]  + h ( l -  c ) )  

- ! P O ~ ’ + G - I I + - - Y - -  
2a zaR 

(6.2) 
Onwritingf = afi+bf2, theboundarycondition(4.ll)requiresthataf;(O)+bf~(O) 
is zero. Therefore, on neglecting terms which are exponentially small, f = bf2 
within the thin layer near the surface where diffusion of solute is significant. 
Consequently, from (6.1) 

Substitution of this in (6.2) yields the eigenvalue relationship for c. 
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As in 3 5, we now examine several cases for which further approximations can 
be made. 

Case (6i): A = 0 

On setting A equal to zero, we obtain the result for the case where no diffusion of 
solute takes place. One might expect that this should correspond to the case of 
insoluble contaminant, and this is indeed so. The result obtained is precisely 
equation (5.7) which is identical to aresult obtained by Craik (1968) for insoluble 
contaminant. It is interesting to compare the physical mechanisms by which the 
present case and case (5i) yield the identical equation. Here, the (dimensionless) 
molecular diffusivity is taken to be so small that no significant diffusion of solute 
occurs; whereas, in the previous case, the digusivity of solute may be large, but 
such diffusion is unimportant since changes in surfactant adsorption produce 
only small changes in the underlying solute concentration. 

Case (6ii) : large surface-elasticity parameter 

When TI is sufficiently large, equation (6.2) yields the same approximate solution 
as that given in case (5iii). The stabilizing role of the contaminant in these cases 
is clearly independent of diffusion of solute, for the same results hold whether 
A/. is large or small. 

Case (6iii): h < (aA-l 11 -cl)-'. 

In this case, the term in A dominates the denominator of the right-hand side of 
equation (6.2). In  physical terms, this occurs when the diffusive transfer of 
material between the adsorbed surface and the bulk solution is sufficiently rapid 
to maintain the surfactant adsorption nearly-but not quite-constant, despite 
the periodic extension and contraction of the surface by a passing wave. Then, 
equation (6.2) becomes approximately 

c ( l +  Q) - (1 + iQ) + &hR(T0a2+G- 11) (1 + %Q) - iRC = 0, (6.4) 

where (6.5) 

When 1 Q l  is small compared with unity but possibly of the same order as 
aR I Toa2 + G - II I and R I Cl , further approximation yields the results 

c = 1 - rQ - r,xn +-. 2 r  3 , 2% 
ci = - tQ, - QaR(T,a2 + G - lIr) + &RE,, 

where the subscripts r and i denote real and imaginary parts respectively. If, 
further, we consider the wave to be neutrally stable, c, = 0 and 1 - c is real. But, 
when 1 - c is real and positive, the above expression for Q reveals that Q, = - Qi 
and that Qr is positive; while, if 1 - c is negative, Qr and Q, are seen to be equal 
and positive [on recalling that 1 - c = (c - 1) exp ( - in)]. But, in the above result 
for c,, the term in Q, is stabilizing or destabilizing according as Qi is positive or 
negative. So, for the neutral case ci = 0, the contribution of this term is stabilizing 
or destabilizing according as Q7 is greater or less than RZr - QaRII,. However, 
since c is here close to unity, the assumption that I Q l  < 1 is rather restrictive in 
view of its dependence on (1 - cf-4. 
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If I Q [  is large compared with unity, a first approximation to equation (6.4) is 
c = 9. A better approximation might then be developed to obtain the same result 
as for case (6ii). Alternatively, if 1 Q l  is large but IaRQ(Toa2+G-II)l remains 
small, result (6.4) yields the next approximation as c = $(l + Q-l). Further, on 
setting 1-c = 8 in the expression (6.5) for Q, the argument of Q-l is readily 
shown to be in. Consequently, the imaginary part of i2-l is positive, and the 
disturbance is unstable. 

The condition for neutral stability may also be determined for intermediate 
values of I Q l  . Assuming that 1 - c is then positive, we may write 

to find from (6.4) that 
Qr = -Qt  = 2 - q q  

confirming that c, lies between 4 and 1 ;  and, since ci = 0,  

Toa2 + c! - II, = &z-~[C~ + 2-*(Zi + Z,,) I Q l +  2-BR-l I Q l ]  
x [ 1 + g - 3  I Q l  + I Q12]-1+ O( I nil). (6.6) 

This last equation represents a balance between the restoring forces of gravity 
and surface tension and the other destabilizing forces. When 1 Q 1  is zero, the 
result for uncontaminated films is obtained; and when I Q I  is sufficiently large the 
right-hand side of (6.6) may be taken as zero to retrieve the result of case (6ii). 

The destabilizing role of the complex shear-stress parameter Z, is modified by 
the diffusion of adsorbed material. For small values of I this role may be some- 
what enhanced (since X, is probably greater than $&); but, as I Q l  increases, the 
influence of the X terms diminishes until, when 1 Q l  1, it  vanishes altogether 
and case (6ii) is recovered. Also, there is an additional destabilizing term which is 
represented on the right-hand side of (6.6) as proportional to R-l. This term has 
a maximum at I Q l  = 2 but it, too, decreases to zero as I Q l  becomes large. (This 
term is somewhat reminiscent of that in aRhT, which occurs in the stability 
criterion for case (5ii).) Equation (6.6) admirably illustrates the operation of 
conflicting stabilizing and destabilizing contributions which arise from the 
presence of contamination. The net effect may be stabilizing or destabilizing, 
depending on the relative importance of these contributions. 

7. Discussion 
The various cases examined in $9 5 and 6 reveaI that the role of soluble surface- 

active agents is a complex one, which may be either stabilizing or destabilizing. 
Cases (5iii) and (6ii) show that sufficiently large surface elasticity is strongly 
stabilizing owing to the effective suppression of the destabilizing action of the 
periodic tangential stress Q exerted by the airflow; and case (6iii) demonstrates 
how the role of Zq progressively diminishes as the surface elasticity increases. On 
the other hand, case (5ii) provides an example of the destabilizing role of the 
surfactant; and a somewhat similar destabilizing term also arises in the stability 
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criterion for case (6iii). Cases (5i) and (6i) both yield results identical to those 
for insoluble contaminants, for which Craik (1968, 3 8) has shown that surface 
elasticity may be destabilizing. 

Cases ( 5  i) and (6i) are especially instructive since they help to define conditions 
for which solubility and diffusion of solute may be neglected. In particular, these 
cases require, respectively, that 11 - c( h > 1 and (a/A)* 11 - c(  8 > I : but, on the 
basis of equation (5.7), Craik found solutions for which c is close to unity. Clearly, 
the range of validity of these solutions must be restricted either to very insoluble 
materials or to those with small molecular diffusivity. This is so because, when c 
is near to unity, the period of the wave in a reference frame moving with the liquid 
surface is very large; and, consequently, a long time is available for t'ransfer of 
material between the adsorbed layer and the solution. 

It can be shown that the waves under discussion are examples of the ' kinematic 
waves' discussed by Lighthill & Whitham (1955)-see also Craik & Smith (1968). 
Since the wavelength is large compared with the film thickness, the surface of the 
liquid is raised or lowered according as the x derivative of the net horizontal 
volume flux Q is negative or positive. If Q is measured relative to a frame of 
reference moving with the wave velocity c,, the wave is neutrally stable if aQ/ax 
is zero. If the periodic tangential stress exerted by the adsorbed surface layer is 
represented as 57, where 3 is complex, the (dimensionless) horizontal velocity 
distribution in such a reference frame is, to first order in jyj, 

U ( X ,  y) = y-c,+R(C +Z)vy -iaR(TOa2+G- I I ) ry ( l -  By), 

where the last term derives from the (hydrostatic) pressure gradient in the 
x direction. But 

and this is zero for neutral stability. Therefore 

and 

the latter being the criterion for neutral stability. 
The complexities which became apparent in @ 5  and 6 are attributable to the 

dependence of E on the (linearized) velocity U J X ,  1 + 7) at the liquid surface and 
on the transfer of contaminant between surface layer and solution. These com- 
plexities are best illustrated with reference to one particular case, and, for this 
purpose, we shall consider case (6iii). 

For this case, the diffusive transfer of material between surface and solution 
is sufficiently large to maintain the surfactant adsorption nearly constant despite 
the periodic stretching and contraction of the surface: that is (cf. equation (3.4)) 
I',(au/ax), = -A(aC/az), at the surface. Also, since (6.3) shows that C-C, and 
aC/ax differ in phase by 45" at the surface, the surface stress 37 owing to the 
x gradient of the corresponding surfactant adsorption must also differ in phase 
from (a2u/ax2), by 45". Further, since - (a2u/ax2), is approximately in phase with 
the wave elevation 7 when R IZ + E I and aR I Toa2 + C - n I are sufficiently small, 



Waves in thin jilms with contaminant 543 

it follows that Eq and -7 are about 45' out of phase. Comparison of the above 
results with those of case (6iii) show that 3 may be identified with - R-1Q when 

I Q I  is small; and the expression (6.5) for f2 confirms this 45' phase difference. The 
sign of sli then determines whether the tangential stress component Zi7 is 
stabilizing or destabilizing. However, when I Szl is larger, the dependence of E on 
the wave velocity c and the other parameters of the problem gives rise to greater 
complexity. For example, the fact that the stress Eq depends on (a%/az2),, and 
that u(x,  1 + 7) itself depends upon B and 2,  accounts for the occurrence of terms 
like I f2 [ 2 and X I 521 in the analysis. 

The rather subtle role of surface contamination which is revealed by the 
theoretical results of Q 5  and 6 is supported qualitatively by the experiments 
described in 3 2. There, with Teepol as contaminant, the onset of 'slow waves' 
occurred at  smaller film thicknesses than for clean water. This increased stability 
is consistent with the reduction in effectiveness of the shear-stress component Zi7 
which is demonshrated in case (6iii) when (sll is O(1). However, since instability 
eventually occurred on making the film thickness sufficiently small, the influence 
of this stress component cannot be entirely absent, as in cases (5iii) and (6ii); 
for then the (dimensional) stability criterion does not depend explicitly on the 
film thickness. 

When contaminated by camphor, slow waves manifest themselves in thicker 
films than for clean water. The greater instability in this case may correspond 
to the situation of case (5ii), or to that of case (6iii) when the net effect is 
destabilizing. In view of the restrictive conditions under which cases (5i) and 
(6i) give rise to instability of the kind discussed by Craik (1968), it seems some- 
what less likely that these cases might apply. 

The experimental observations of slow waves indicated that their velocities 
of propagation were less than the velocity of the liquid surface. This is consistent 
with the results of the various theoretical models; but, owing to the presence of 
finite-amplitude effects for the observed waves, the measurement of these 
velocities does not constitute a valid criterion for determining which of these 
models is the most appropriate. 

Unfortunately, it is impossible to proceed beyond this qualitative comparison 
of theory and experiment. A quantitative test of the theory must await experi- 
ments which incorporate measurements of all the relevant properties of the 
contaminated surface and of the solute. Nevertheless, the present experiment 
convincingly supports the theoretical conclusion that the effect of soluble surface- 
active agents can be stabilizing or destabilizing. 

The authors are indebted to Mr H. M. Barkla and Mr D. Niven for help with 
the erection of the apparatus. 
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FIGURE 3. Photograph of typical streak. 
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